Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Front Immunol ; 15: 1232070, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638443

RESUMEN

Chronic liver diseases, such as non-alcoholic steatohepatitis (NASH)-induced cirrhosis, are characterized by an increasing accumulation of stressed, damaged, or dying hepatocytes. Hepatocyte damage triggers the activation of resident immune cells, such as Kupffer cells (KC), as well as the recruitment of immune cells from the circulation toward areas of inflammation. After infiltration, monocytes differentiate into monocyte-derived macrophages (MoMF) which are functionally distinct from resident KC. We herein aim to compare the in vitro signatures of polarized macrophages and activated hepatic stellate cells (HSC) with ex vivo-derived disease signatures from human NASH. Furthermore, to shed more light on HSC activation and liver fibrosis progression, we investigate the effects of the secretome from primary human monocytes, macrophages, and NK cells on HSC activation. Interleukin (IL)-4 and IL-13 treatment induced transforming growth factor beta 1 (TGF-ß1) secretion by macrophages. However, the supernatant transfer did not induce HSC activation. Interestingly, PMA-activated macrophages showed strong induction of the fibrosis response genes COL10A1 and CTGF, while the supernatant of IL-4/IL-13-treated monocytes induced the upregulation of COL3A1 in HSC. The supernatant of PMA-activated NK cells had the strongest effect on COL10A1 induction in HSC, while IL-15-stimulated NK cells reduced the expression of COL1A1 and CTGF. These data indicate that other factors, aside from the well-known cytokines and chemokines, might potentially be stronger contributors to the activation of HSCs and induction of a fibrotic response, indicating a more diverse and complex role of monocytes, macrophages, and NK cells in liver fibrosis progression.


Asunto(s)
Macrófagos del Hígado , Enfermedad del Hígado Graso no Alcohólico , Humanos , Macrófagos del Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Interleucina-13/metabolismo , Secretoma , Macrófagos , Cirrosis Hepática , Células Asesinas Naturales/metabolismo
2.
Front Immunol ; 15: 1360063, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38558809

RESUMEN

Hepatocellular carcinoma (HCC) and solid cancers with liver metastases are indications with high unmet medical need. Interleukin-12 (IL-12) is a proinflammatory cytokine with substantial anti-tumor properties, but its therapeutic potential has not been realized due to severe toxicity. Here, we show that orthotopic liver tumors in mice can be treated by targeting hepatocytes via systemic delivery of adeno-associated virus (AAV) vectors carrying the murine IL-12 gene. Controlled cytokine production was achieved in vivo by using the tetracycline-inducible K19 riboswitch. AAV-mediated expression of IL-12 led to STAT4 phosphorylation, interferon-γ (IFNγ) production, infiltration of T cells and, ultimately, tumor regression. By detailed analyses of efficacy and tolerability in healthy and tumor-bearing animals, we could define a safe and efficacious vector dose. As a potential clinical candidate, we characterized vectors carrying the human IL-12 (huIL-12) gene. In mice, bioactive human IL-12 was expressed in a vector dose-dependent manner and could be induced by tetracycline, suggesting tissue-specific AAV vectors with riboswitch-controlled expression of highly potent proinflammatory cytokines as an attractive approach for vector-based cancer immunotherapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Riboswitch , Ratones , Humanos , Animales , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patología , Terapia Genética , Interleucina-12/genética , Interleucina-12/metabolismo , Tetraciclina/farmacología
3.
NPJ Parkinsons Dis ; 9(1): 91, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37322068

RESUMEN

Prion-like transmission of pathology in α-synucleinopathies like Parkinson's disease or multiple system atrophy is increasingly recognized as one potential mechanism to address disease progression. Active and passive immunotherapies targeting insoluble, aggregated α-synuclein are already being actively explored in the clinic with mixed outcomes so far. Here, we report the identification of 306C7B3, a highly selective, aggregate-specific α-synuclein antibody with picomolar affinity devoid of binding to the monomeric, physiologic protein. 306C7B3 binding is Ser129-phosphorylation independent and shows high affinity to several different aggregated α-synuclein polymorphs, increasing the likelihood that it can also bind to the pathological seeds assumed to drive disease progression in patients. In support of this, highly selective binding to pathological aggregates in postmortem brains of MSA patients was demonstrated, with no staining in samples from other human neurodegenerative diseases. To achieve CNS exposure of 306C7B3, an adeno-associated virus (AAV) based approach driving expression of the secreted antibody within the brain of (Thy-1)-[A30P]-hα-synuclein mice was used. Widespread central transduction after intrastriatal inoculation was ensured by using the AAV2HBKO serotype, with transduction being spread to areas far away from the inoculation site. Treatment of (Thy-1)-[A30P]-hα-synuclein mice at the age of 12 months demonstrated significantly increased survival, with 306C7B3 concentration reaching 3.9 nM in the cerebrospinal fluid. These results suggest that AAV-mediated expression of 306C7B3, targeting extracellular, presumably disease-propagating aggregates of α-synuclein, has great potential as a disease-modifying therapy for α-synucleinopathies as it ensures CNS exposure of the antibody, thereby mitigating the selective permeability of the blood-brain barrier.

4.
Sci Rep ; 12(1): 19268, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36357523

RESUMEN

Transgenic animals with increased or abrogated target gene expression are powerful tools for drug discovery research. Here, we developed a CRISPR-based Rosa26-LSL-dCas9-VPR mouse model for targeted induction of endogenous gene expression using different Adeno-associated virus (AAV) capsid variants for tissue-specific gRNAs delivery. To show applicability of the model, we targeted low-density lipoprotein receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9), either individually or together. We induced up to ninefold higher expression of hepatocellular proteins. In consequence of LDLR upregulation, plasma LDL levels almost abolished, whereas upregulation of PCSK9 led to increased plasma LDL and cholesterol levels. Strikingly, simultaneous upregulation of both LDLR and PCSK9 resulted in almost unaltered LDL levels. Additionally, we used our model to achieve expression of all α1-Antitrypsin (AAT) gene paralogues simultaneously. These results show the potential of our model as a versatile tool for optimized targeted gene expression, alone or in combination.


Asunto(s)
Proproteína Convertasa 9 , Proproteína Convertasas , Ratones , Animales , Proproteína Convertasa 9/genética , Proproteína Convertasas/metabolismo , Serina Endopeptidasas/metabolismo , Receptores de LDL/metabolismo , Modelos Animales de Enfermedad , Descubrimiento de Drogas
5.
Am J Physiol Lung Cell Mol Physiol ; 323(2): L206-L218, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35762632

RESUMEN

Animal models are important to mimic certain pathways or biological aspects of human pathologies including acute and chronic pulmonary diseases. We developed a novel and flexible mouse model of acute epithelial lung injury based on adeno-associated virus (AAV) variant 6.2-mediated expression of the human diphtheria toxin receptor (DTR). Following intratracheal administration of diphtheria toxin (DT), a cell-specific death of bronchial and alveolar epithelial cells can be observed. In contrast to other lung injury models, the here described mouse model provides the possibility of targeted injury using specific tropisms of AAV vectors or cell-type-specific promotors to drive the human DTR expression. Also, generation of cell-specific mouse lines is not required. Detailed characterization of the AAV-DTR/DT mouse model including titration of viral genome (vg) load and administered DT amount revealed increasing cell numbers in bronchoalveolar lavage (BAL; macrophages, neutrophils, and unspecified cells) and elevation of degenerated cells and infiltrated leukocytes in lung tissue, dependent of vg load and DT dose. Cytokine levels in BAL fluid showed different patterns with higher vg load, e.g., IFNγ, TNFα, and IP10 increasing and IL-5 and IL-6 decreasing, whereas lung function was not affected. In addition, laser-capture microdissection (LCM)-based proteomics of bronchial epithelium and alveolar tissue revealed upregulated immune and inflammatory responses in all regions and extracellular matrix deposition in infiltrated alveoli. Overall, our novel AAV-DTR/DT model allows investigation of repair mechanisms following epithelial injury and resembles specific mechanistic aspects of acute and chronic pulmonary diseases.


Asunto(s)
Lesión Pulmonar Aguda , Toxina Diftérica , Lesión Pulmonar Aguda/patología , Células Epiteliales Alveolares/metabolismo , Animales , Toxina Diftérica/metabolismo , Modelos Animales de Enfermedad , Humanos , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL
6.
Transl Vis Sci Technol ; 11(5): 18, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35579886

RESUMEN

Purpose: Inflammation is implicated in the etiology of diverse retinopathies including uveitis, age-related macular degeneration or diabetic retinopathy. Tumor necrosis factor alpha (TNF-α) is a well-known proinflammatory cytokine that is described as a biomarker for inflammation in diverse retinopathies and therefore emerged as an interesting target to treat inflammation in the eye by neutralizing anti-TNF-α antibodies. Methods: Recently, we have demonstrated that Adeno-associated virus (AAV)-mediated expression of human TNF-α in the murine eye induces retinal inflammation including vasculitis and fibrosis, thereby mimicking human disease-relevant pathologies. In a proof-of-mechanism study, we now tested whether AAV-TNF-α induced pathologies can be reversed by neutralizing TNF-α antibody treatment. Results: Strikingly, a single intravitreal injection of the TNF-α antibody golimumab reduced AAV-TNF-α-induced retinal inflammation and retinal thickening. Furthermore, AAV-TNF-α-mediated impaired retinal function was partially rescued by golimumab as revealed by electroretinography recordings. Finally, to study TNF-α-induced vasculitis in human in vitro cell culture assays, we established a monocyte-to-endothelium adhesion co-culture system. Indeed, also in vitro TNF-α induced monocyte adhesion to human retinal endothelial cells, which was prevented by golimumab. Conclusions: Overall, our study describes valuable in vitro and in vivo approaches to study the function of TNF-α in retinal inflammation and demonstrated a preclinical proof-of-mechanism treatment with golimumab. Translational Relevance: The AAV-based model expressing human TNF-α allows us to investigate TNF-α-driven pathologies supporting research in mechanisms of retinal inflammation.


Asunto(s)
Enfermedades de la Retina , Factor de Necrosis Tumoral alfa , Vasculitis , Animales , Dependovirus/genética , Células Endoteliales/patología , Humanos , Inflamación , Ratones , Ratones Endogámicos C57BL , Enfermedades de la Retina/etiología , Enfermedades de la Retina/metabolismo , Enfermedades de la Retina/patología , Inhibidores del Factor de Necrosis Tumoral/farmacología , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Vasculitis/etiología , Vasculitis/patología
7.
Transl Vis Sci Technol ; 10(11): 15, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34520511

RESUMEN

Purpose: Retinopathies display complex pathologies, including vasculopathies, inflammation, and fibrosis, leading ultimately to visual impairment. However, animal models accurately reflecting these pathologies are lacking. In this study, we evaluate the suitability of using Adeno-associated virus (AAV)-mediated long-term expression of cytokines to establish retinal pathology in the murine retina. Methods: We administered recombinant, Müller-glia targeted AAV-ShH10 into the mouse vitreous to induce retinal expression of either human vascular endothelial growth factor (VEGF)-A165, tumor necrosis factor alpha (TNF-α), or interleukin-6 (IL-6) and evaluated consequent effects by optical coherence tomography, fluorescein angiography, and histology. Results: Intravitreal injection of AAVs resulted in rapid and stable expression of the transgenes within 1 to 6 weeks. Akin to the role of VEGF-A in wet age-related macular degeneration, expression of VEGF-A led to several vasculopathies in mice, including neovascularization and vascular leakage. In contrast, the expression of the proinflammatory cytokines TNF-α or IL-6 induced retinal inflammation, as indicated by microglial activation. Furthermore, the expression of TNF-α, but not of IL-6, induced immune cell infiltration into the vitreous as well as vasculitis, and subsequently induced the development of fibrosis and epiretinal membranes. Conclusions: In summary, the long-term expression of human VEGF-A165, TNF-α, or IL-6 in the mouse eye induced specific pathologies within 6 weeks that mimic different aspects of human retinopathies. Translational Relevance: AAV-mediated expression of human genes in mice is an attractive approach to provide valuable insights into the underlying molecular mechanisms causing retinopathies and is easily adaptable to other genes and preclinical species supporting drug discovery for retinal diseases.


Asunto(s)
Factor de Necrosis Tumoral alfa , Factor A de Crecimiento Endotelial Vascular , Animales , Dependovirus/genética , Humanos , Interleucina-6/genética , Ratones , Retina , Factor de Necrosis Tumoral alfa/genética , Factor A de Crecimiento Endotelial Vascular/genética
8.
Toxicol Pathol ; 49(4): 862-871, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33896293

RESUMEN

Proliferative retinopathies, such as diabetic retinopathy and retinopathy of prematurity, are leading causes of vision impairment. A common feature is a loss of retinal capillary vessels resulting in hypoxia and neuronal damage. The oxygen-induced retinopathy model is widely used to study revascularization of an ischemic area in the mouse retina. The presence of endothelial tip cells indicates vascular recovery; however, their quantification relies on manual counting in microscopy images of retinal flat mount preparations. Recent advances in deep neural networks (DNNs) allow the automation of such tasks. We demonstrate a workflow for detection of tip cells in retinal images using the DNN-based Single Shot Detector (SSD). The SSD was designed for detection of objects in natural images. We adapt the SSD architecture and training procedure to the tip cell detection task and retrain the DNN using labeled tip cells in images of fluorescently stained retina flat mounts. Transferring knowledge from the pretrained DNN and extensive data augmentation reduced the amount of required labeled data. Our system shows a performance comparable to the human level, while providing highly consistent results. Therefore, such a system can automate counting of tip cells, a readout frequently used in retinopathy research, thereby reducing routine work for biomedical experts.


Asunto(s)
Aprendizaje Profundo , Enfermedades de la Retina , Animales , Humanos , Ratones , Redes Neurales de la Computación , Oxígeno , Enfermedades de la Retina/inducido químicamente , Vasos Retinianos
9.
Int J Mol Sci ; 22(4)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670766

RESUMEN

This study aims to develop a reliable and reproducible inflammatory bowel disease (IBD) murine model based on a careful spatial-temporal histological characterization. Secondary aims included extensive preclinical studies focused on the in situ expression of clinically relevant biomarkers and targets involved in IBD. C57BL/6 female mice were used to establish the IBD model. Colitis was induced by the oral administration of 2% Dextran Sulfate Sodium (DSS) for 5 days, followed by 2, 4 or 9 days of water. Histological analysis was performed by sectioning the whole colon into rings of 5 mm each. Immunohistochemical analyses were performed for molecular targets of interest for monitoring disease activity, treatment response and predicting outcome. Data reported here allowed us to develop an original scoring method useful as a tool for the histological assessment of preclinical models of DSS-induced IBD. Immunohistochemical data showed a significant increase in TNF-α, α4ß7, VEGFRII, GR-1, CD25, CD3 and IL-12p40 expression in DSS mice if compared to controls. No difference was observed for IL-17, IL-23R, IL-36R or F480. Knowledge of the spatial-temporal pattern distribution of the pathological lesions of a well-characterized disease model lays the foundation for the study of the tissue expression of meaningful predictive biomarkers, thereby improving translational success rates of preclinical studies for a personalized management of IBD patients.


Asunto(s)
Biomarcadores/metabolismo , Desarrollo de Medicamentos , Enfermedades Inflamatorias del Intestino/patología , Animales , Colitis/patología , Citocinas/metabolismo , Sulfato de Dextran , Modelos Animales de Enfermedad , Femenino , Integrinas/metabolismo , Mucosa Intestinal/patología , Ratones Endogámicos C57BL , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
10.
Pharmaceutics ; 12(12)2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33276439

RESUMEN

The rat is a commonly used species in ocular drug research. Detailed methods of separating rat ocular tissues have not been described in literature. To understand the intraocular drug distribution, we developed a robust method for the separation of individual anterior and posterior substructures of pigmented Brown Norway (BN) and albino Wistar Han (WH) rat eyes, followed by quantification of drug concentration in these substructures. A short formalin incubation, which did not interfere with drug quantification, enabled the preservation of individual tissue sections while minimizing cross-tissue contamination, as demonstrated by histological analysis. Following oral administration, we applied the tissue separation method, in order to determine the ocular concentrations of dexamethasone and levofloxacin, as well as two in-house molecules BI 113823 and BI 1026706, compounds differing in their melanin binding. The inter-individual variability in tissue partitioning coefficients (Kp) was low, demonstrating the reproducibility of the separation method. Kp values of individual tissues varied up to 100-fold in WH and up to 46,000-fold in BN rats highlighting the importance of measuring concentration directly from the ocular tissue of interest. Additionally, clear differences were observed in the BN rat tissue partitioning compared to the WH rat. Overall, the developed method enables a reliable determination of small molecule drug concentrations in ocular tissues to support ocular drug research and development.

11.
Nat Commun ; 11(1): 5432, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33116134

RESUMEN

Adeno-associated virus (AAV) forms the basis for several commercial gene therapy products and for countless gene transfer vectors derived from natural or synthetic viral isolates that are under intense preclinical evaluation. Here, we report a versatile pipeline that enables the direct side-by-side comparison of pre-selected AAV capsids in high-throughput and in the same animal, by combining DNA/RNA barcoding with multiplexed next-generation sequencing. For validation, we create three independent libraries comprising 183 different AAV variants including widely used benchmarks and screened them in all major tissues in adult mice. Thereby, we discover a peptide-displaying AAV9 mutant called AAVMYO that exhibits superior efficiency and specificity in the musculature including skeletal muscle, heart and diaphragm following peripheral delivery, and that holds great potential for muscle gene therapy. Our comprehensive methodology is compatible with any capsids, targets and species, and will thus facilitate and accelerate the stratification of optimal AAV vectors for human gene therapy.


Asunto(s)
Proteínas de la Cápside/genética , Dependovirus/genética , Vectores Genéticos , Músculos/metabolismo , Músculos/virología , Animales , Cápside , Código de Barras del ADN Taxonómico , Femenino , Biblioteca de Genes , Terapia Genética/métodos , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , Ratones Endogámicos C57BL , Mutación , Especificidad de Órganos
12.
FASEB J ; 34(6): 7825-7846, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32297676

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a fatal disease of unknown cause that is characterized by progressive fibrotic lung remodeling. An abnormal emergence of airway epithelial-like cells within the alveolar compartments of the lung, herein termed bronchiolization, is often observed in IPF. However, the origin of this dysfunctional distal lung epithelium remains unknown due to a lack of suitable human model systems. In this study, we established a human induced pluripotent stem cell (iPSC)-derived air-liquid interface (ALI) model of alveolar epithelial type II (ATII)-like cell differentiation that allows us to investigate alveolar epithelial progenitor cell differentiation in vitro. We treated this system with an IPF-relevant cocktail (IPF-RC) to mimic the pro-fibrotic cytokine milieu present in IPF lungs. Stimulation with IPF-RC during differentiation increases secretion of IPF biomarkers and RNA sequencing (RNA-seq) of these cultures reveals significant overlap with human IPF patient data. IPF-RC treatment further impairs ATII differentiation by driving a shift toward an airway epithelial-like expression signature, providing evidence that a pro-fibrotic cytokine environment can influence the proximo-distal differentiation pattern of human lung epithelial cells. In conclusion, we show for the first time, the establishment of a human model system that recapitulates aspects of IPF-associated bronchiolization of the lung epithelium in vitro.


Asunto(s)
Células Epiteliales Alveolares/patología , Fibrosis Pulmonar Idiopática/patología , Células Madre Pluripotentes Inducidas/patología , Alveolos Pulmonares/patología , Células Epiteliales Alveolares/metabolismo , Biomarcadores/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Citocinas/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Pulmón/metabolismo , Pulmón/patología , Alveolos Pulmonares/metabolismo , Células Madre/metabolismo , Células Madre/patología
13.
BMC Med Genomics ; 12(1): 69, 2019 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-31122257

RESUMEN

BACKGROUND: The ability to generate recombinant drug target proteins is important for drug discovery research as it facilitates the investigation of drug-target-interactions in vitro. To accomplish this, the target's exact protein sequence is required. Public databases, such as Ensembl, UniProt and RefSeq, are extensive protein and nucleotide sequence repositories. However, many sequences for non-human organisms are predicted by computational pipelines and may thus be incomplete or incorrect. This could lead to misinterpreted experimental outcomes due to gaps or errors in orthologous drug target sequences. Transcriptome analysis by RNA-Seq has been established as a standard method for gene expression analysis. Apart from this common application, paired-end RNA-Seq data can also be used to obtain full coverage cDNA sequences via de novo transcriptome assembly. METHODS: To assess whether de novo transcriptome assemblies can be used to determine a protein's sequence by searching the assembly for a known orthologous sequence, we generated 3 × 6 = 18 tissue specific assemblies (three organs: brain, kidney and liver; six species: human, mouse, rat, dog, pig and cynomolgus monkey). These assemblies and the manually curated human protein sequences from UniProtKB/Swiss-Prot were used in a reciprocal BLAST search to identify best matching hits. We automated and generalised our approach and present the a&o-tool, a workflow which exploits de novo assemblies of paired-end RNA-Seq data and orthology information for target sequence validation and refinement across related species. Furthermore, the a&o-tool extracts best hits' sequences from a reciprocal BLAST search, translates them into protein sequences, computes a multiple sequence alignment and quantifies the refinement. RESULTS: For the three human assemblies we observed a hit rate greater than 60% with 100% sequence coverage and identity. For assemblies from the other species we observed similar hit rates and coverage with highest identities for cynomolgus monkey. CONCLUSIONS: In summary, we show how to refine protein sequences using RNA-Seq data and sequence information from closely related species. With the a&o-tool we provide a fully automated pipeline to perform refinement including cDNA translation and multiple sequence alignment for visual inspection. The major prerequisite for applying the a&o-tool is high quality sequencing data.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Homología de Secuencia de Ácido Nucleico , Animales , Genómica , Humanos , Análisis de Secuencia de ARN
14.
Dig Dis Sci ; 64(5): 1238-1256, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30511198

RESUMEN

BACKGROUND: There is a marked need for improved animal models of nonalcoholic steatohepatitis (NASH) to facilitate the development of more efficacious drug therapies for the disease. METHODS: Here, we investigated the development of fibrotic NASH in male Wistar rats fed a choline-deficient L-amino acid-defined (CDAA) diet with or without cholesterol supplementation for subsequent assessment of drug treatment efficacy in NASH biopsy-confirmed rats. The metabolic profile and liver histopathology were evaluated after 4, 8, and 12 weeks of dieting. Subsequently, rats with biopsy-confirmed NASH were selected for pharmacological intervention with vehicle, elafibranor (30 mg/kg/day) or obeticholic acid (OCA, 30 mg/kg/day) for 5 weeks. RESULTS: The CDAA diet led to marked hepatomegaly and fibrosis already after 4 weeks of feeding, with further progression of collagen deposition and fibrogenesis-associated gene expression during the 12-week feeding period. Cholesterol supplementation enhanced the stimulatory effect of CDAA on gene transcripts associated with fibrogenesis without significantly increasing collagen deposition. Pharmacological intervention with elafibranor, but not OCA, significantly reduced steatohepatitis scores, and fibrosis-associated gene expression, however, was unable to prevent progression in fibrosis scores. CONCLUSION: CDAA-fed rats develop early-onset progressive NASH, which offers the opportunity to probe anti-NASH compounds with potential disease-modifying properties.


Asunto(s)
Chalconas/uso terapéutico , Ácido Quenodesoxicólico/análogos & derivados , Colesterol/toxicidad , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Nutrientes/deficiencia , Propionatos/uso terapéutico , Animales , Ácido Quenodesoxicólico/uso terapéutico , Colesterol/administración & dosificación , Progresión de la Enfermedad , Masculino , Enfermedad del Hígado Graso no Alcohólico/patología , Ratas , Ratas Wistar
15.
Q J Nucl Med Mol Imaging ; 62(1): 78-100, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29190999

RESUMEN

Inflammatory bowel diseases are lifelong disorders affecting the gastrointestinal tract characterized by intermittent disease flares and periods of remission with a progressive and destructive nature. Unfortunately, the exact etiology is still not completely known, therefore a causal therapy to cure the disease is not yet available. Current treatment options mainly encompass the use of non-specific anti-inflammatory agents and immunosuppressive drugs that cause significant side effects that often have a negative impact on patients' quality of life. As the majority of patients need a long-term follow-up it would be ideal to rely on a non-invasive technique with good compliance. Currently, the gold standard diagnostic tools for managing IBD are represented by invasive procedures such as colonoscopy and histopathology. Nevertheless, recent advances in imaging technology continue to improve the ability of imaging techniques to non-invasively monitor disease activity and treatment response in preclinical models of IBD. Novel and emerging imaging techniques not only allow direct visualization of intestinal inflammation, but also enable molecular imaging and targeting of specific alterations of the inflamed murine mucosa. Furthermore, molecular imaging advances allow us to increase our knowledge on the critical biological pathways involved in disease progression by characterizing in vivo processes at a cellular and molecular level and enabling significant improvements in the understanding of the etiology of IBD. This review presents a critical and updated overview on the imaging advances in animal models of IBD. Our aim is to highlight the potential beneficial impact and the range of applications that imaging techniques could offer for the improvement of the clinical monitoring and management of IBD patients: diagnosis, staging, determination of therapeutic targets, monitoring therapy and evaluation of the prognosis, personalized therapeutic approaches.


Asunto(s)
Diagnóstico por Imagen/métodos , Enfermedades Inflamatorias del Intestino/diagnóstico por imagen , Animales , Modelos Animales de Enfermedad , Humanos , Enfermedades Inflamatorias del Intestino/inducido químicamente , Enfermedades Inflamatorias del Intestino/patología , Medicina Nuclear
16.
Inflamm Bowel Dis ; 22(6): 1286-95, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27104818

RESUMEN

BACKGROUND: Colonoscopy is the gold standard to diagnose and follow up the evolution of inflammatory bowel diseases. However, this technique can still present a risk of severe complications, a general discomfort in patients, and its diagnostic value is limited to the visualization of the colon mucosal changes. Magnetic resonance imaging (MRI) is emerging as a noninvasive imaging technique of choice to overcome these limitations. The aim of this work was to evaluate the potential of colon wall thickness measured using MRI as an in vivo imaging biomarker of inflammation for inflammatory bowel disease in an animal model of this disease. METHODS: On day 0, 2% or 3% Dextran sodium sulfate was added to the drinking water of mice (n = 10/group) for 5 days. Six mice were left as controls. Animals were imaged with colonoscopy and MRI on days 7, 11, and 21 to study the colitis progression. Histology was performed at the end of the protocol. RESULTS: The colon wall thickness measured in Dextran sodium sulfate-treated animals was shown to be significantly and dose dependently increased compared to controls. Colonoscopy showed similar results and excellently correlated with MRI measurements and histology. The proposed protocol showed high robustness, with negligible interoperator and intraoperator variability. CONCLUSIONS: The findings of this investigation suggest the feasibility of using MRI for the noninvasive assessment of colon wall thickness as a robust surrogate biomarker for colon inflammation detection and follow-up. The data presented show the potential of MRI in in vivo preclinical longitudinal studies, including testing of new drugs or investigation of inflammatory bowel disease development mechanisms.


Asunto(s)
Colitis/diagnóstico por imagen , Colon/diagnóstico por imagen , Imagen por Resonancia Magnética , Animales , Biomarcadores , Biopsia , Colitis/inducido químicamente , Colitis/patología , Colon/patología , Colonoscopía , Sulfato de Dextran , Modelos Animales de Enfermedad , Femenino , Estudios Longitudinales , Ratones , Ratones Endogámicos C57BL , Reproducibilidad de los Resultados
17.
PLoS One ; 10(4): e0124606, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25894208

RESUMEN

Cyclophilins are a group of highly conserved cytosolic enzymes that have a peptidylprolyl cis/trans isomerase activity. Cyclophilin A (CyPA) can be secreted in the extracellular space by inflammatory cells and upon cell death. The presence of CyPA in patients with non-ischemic cardiomyopathy is associated with poor clinical prognosis. Here, we investigated the inhibition of extracellular CyPA in a mouse model of troponin I-induced autoimmune myocarditis using the strictly extracellular CyPA-inhibitor MM284. Since A/J mice develop severe inflammation and fibrosis after immunization with murine cardiac troponin I (mcTn I), we used this model to analyze the effects of an extracellular CyPA inhibition. As extracellular CyPA-inhibitor we used the recently described CsA-derivate MM284. In vitro studies confirmed that MM284 inhibits CyPA-induced monocytic migration and adhesion. A/J mice immunized with mcTnI were treated with MM284 or vehicle every second day. After 28 days, we found a considerable reduction of myocardial injury and fibrosis. Further analysis revealed a reduced myocardial presence of T-cells and macrophages compared to control treated animals. Whereas MMP-9 expression was reduced significantly by MM284, we observed no significant reduction of inflammatory cytokines such as IL-6 or TNFα. Extracellular CyPA plays an important role in autoimmune myocarditis for myocardial damage and fibrosis. Our data suggest a new pharmacological approach for the treatment of myocardial inflammation and reduction of cardiac fibrosis by inhibition of extracellular CyPA.


Asunto(s)
Ciclofilina A/antagonistas & inhibidores , Ciclosporinas/uso terapéutico , Espacio Extracelular/química , Inflamación/patología , Miocarditis/tratamiento farmacológico , Miocardio/patología , Remodelación Ventricular/efectos de los fármacos , Animales , Enfermedades Autoinmunes/complicaciones , Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Autoinmunes/patología , Enfermedades Autoinmunes/fisiopatología , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Ciclofilina A/metabolismo , Ciclosporinas/farmacología , Modelos Animales de Enfermedad , Fibrosis , Humanos , Inflamación/complicaciones , Interleucina-6/metabolismo , Macrófagos/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Monocitos/efectos de los fármacos , Monocitos/patología , Miocarditis/complicaciones , Miocarditis/patología , Miocarditis/fisiopatología , Linfocitos T/efectos de los fármacos , Troponina I , Factor de Necrosis Tumoral alfa/metabolismo
18.
Arterioscler Thromb Vasc Biol ; 35(3): 655-63, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25550208

RESUMEN

OBJECTIVE: Cyclophilin A (CyPA) is secreted under inflammatory conditions by various cell types. Whereas the important role of intracellular CyPA for platelet function has been reported, the effect of extracellular CyPA on platelet function has not been investigated yet. APPROACH AND RESULTS: Inhibition of extracellular CyPA through a novel specific inhibitor MM284 reduced thrombus after ferric chloride-induced injury in vivo. In vitro extracellular CyPA enhanced thrombus formation even in CyPA(-/-) platelets. Treatment of isolated platelets with recombinant CyPA resulted in platelet degranulation in a time- and dose-dependent manner. Inhibition of the platelet surface receptor extracellular matrix metalloproteinase inducer (cluster of differentiation 147) by an anticluster of differentiation 147 monoclonal antibody significantly reduced CyPA-dependent platelet degranulation. Pretreatment of platelets with CyPA enhanced their recruitment to mouse carotid arteries after arterial injury, which could be inhibited by an anticluster of differentiation 147 monoclonal antibody (intravital microscopy). The role of extracellular CyPA in adhesion could be confirmed by infusing CyPA(-/-) platelets in CyPA(+/+) mice and by infusing CyPA(+/+) platelets in CyPA(-/-) mice. Stimulation of platelets with CyPA induced phosphorylation of Akt, which could in turn be inhibited in the presence of phosphoinositid-3-kinase inhibitors. Akt-1(-/-) platelets revealed a markedly decreased degranulation on CyPA stimulation. Finally, ADP-induced platelet aggregation was attenuated by MM284, as well as by inhibiting paracrine-secreted CyPA without directly affecting Ca(2+)-signaling. CONCLUSIONS: Extracellular CyPA activates platelets via cluster of differentiation 147-mediated phosphoinositid-3-kinase/Akt-signaling, leading to enhanced adhesion and thrombus formation independently of intracellular CyPA. Targeting extracellular CyPA via a specific inhibitor may be a promising strategy for platelet inhibition without affecting critical functions of intracellular CyPA.


Asunto(s)
Basigina/sangre , Plaquetas/enzimología , Ciclofilina A/sangre , Fosfatidilinositol 3-Quinasas/sangre , Adhesividad Plaquetaria , Proteínas Proto-Oncogénicas c-akt/sangre , Transducción de Señal , Trombosis/enzimología , Animales , Plaquetas/efectos de los fármacos , Traumatismos de las Arterias Carótidas/sangre , Traumatismos de las Arterias Carótidas/enzimología , Traumatismos de las Arterias Carótidas/genética , Degranulación de la Célula/efectos de los fármacos , Cloruros , Ciclofilina A/antagonistas & inhibidores , Ciclofilina A/genética , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Compuestos Férricos , Fibrinolíticos/farmacología , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Adhesividad Plaquetaria/efectos de los fármacos , Agregación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/farmacología , Proteínas Proto-Oncogénicas c-akt/deficiencia , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal/efectos de los fármacos , Trombosis/sangre , Trombosis/inducido químicamente , Trombosis/genética , Trombosis/prevención & control , Factores de Tiempo
19.
Biomaterials ; 36: 80-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25301636

RESUMEN

Targeted contrast-enhanced ultrasound (CEU) using microbubble agents is a promising non-invasive imaging technique to evaluate atherosclerotic lesions. In this study, we decipher the diagnostic and therapeutic potential of targeted-CEU with soluble glycoprotein (GP)-VI in vivo. Microbubbles were conjugated with the recombinant fusion protein GPVI-Fc (MBGPVI) that binds with high affinity to atherosclerotic lesions. MBGPVI or control microbubbles (MBC) were intravenously administered into ApoE(-/-) or wild type mice and binding of the microbubbles to the vessel wall was visualized by high-resolution CEU. CEU molecular imaging signals of MBGPVI were substantially enhanced in the aortic arch and in the truncus brachiocephalicus in ApoE(-/-) as compared to wild type mice. High-frequency ultrasound (HFU)-guided disruption of MBGPVI enhanced accumulation of GPVI in the atherosclerotic lesions, which may interfere with atheroprogression. Thus, we establish targeted-CEU with soluble GPVI as a novel non-invasive molecular imaging method for atherosclerosis. Further, HFU-guided disruption of GPVI-targeted microbubbles is an innovate therapeutic approach that potentially prevents progression of atherosclerotic disease.


Asunto(s)
Aterosclerosis/diagnóstico por imagen , Aterosclerosis/patología , Medios de Contraste , Microburbujas , Imagen Molecular/métodos , Glicoproteínas de Membrana Plaquetaria , Animales , Aterosclerosis/metabolismo , Medios de Contraste/metabolismo , Masculino , Ratones Endogámicos C57BL , Glicoproteínas de Membrana Plaquetaria/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Ultrasonografía
20.
Int J Cardiol ; 176(3): 923-9, 2014 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-25194861

RESUMEN

BACKGROUND: Monocyte migration and their differentiation into macrophages critically regulate vascular inflammation and atherogenesis and are governed by macrophage migration inhibitory factor (MIF). Gremlin-1 binds to MIF. Current experimental evidences present Gremlin-1 as a potential physiological agent that might counter-regulate the inflammatory attributes of MIF. METHODS AND RESULTS: We found that Gremlin-1 inhibited MIF-dependent monocyte migration and adhesion to activated endothelial cells in flow chamber perfusion assay in vitro and to the injured carotid artery of WT and ApoE-/- mice in vivo as deciphered by intravital microscopy. Intravenous administration of Gremlin-1, but not of control protein, significantly reduced leukocyte recruitment towards the inflamed carotid artery of ApoE-/- mice. Besides, leukocytes from MIF-/- when administered into ApoE-/- mice showed lesser adhesion as compared to wild type. In the presence of Gremlin-1 however, adhesion of wild type, but not of MIF-/- leukocytes, to the carotid artery was significantly inhibited as compared to control. Gremlin-1 also inhibited the MIF-induced differentiation of monocytes into macrophages. Gremlin-1 substantially inhibited the anti-apoptotic impact of MIF on monocytes against BH3 mimetic ABT-737-induced apoptosis as verified by Annexin V-binding, caspase 3 activity, and mitochondrial depolarization. CONCLUSIONS: Therefore Gremlin-1 can modulate MIF dependent monocyte adhesion, migration, differentiation and survival.


Asunto(s)
Movimiento Celular/fisiología , Péptidos y Proteínas de Señalización Intercelular/farmacología , Factores Inhibidores de la Migración de Macrófagos/antagonistas & inhibidores , Factores Inhibidores de la Migración de Macrófagos/fisiología , Monocitos/fisiología , Animales , Línea Celular , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...